首页 >国际 > > 正文

全球最资讯丨【机器学习】集成学习代码练习(随机森林、GBDT、XGBoost、LightGBM等)

2022-12-23 07:51:55

本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。

课程地址:


(资料图)

https://www.icourse163.org/course/WZU-1464096179

课程完整代码:

https://github.com/fengdu78/WZU-machine-learning-course

代码修改并注释:黄海广,haiguang2000@wzu.edu.cn

importwarningswarnings.filterwarnings("ignore")importpandasaspdfromsklearn.model_selectionimporttrain_test_split

生成数据

生成12000行的数据,训练集和测试集按照3:1划分

fromsklearn.datasetsimportmake_hastie_10_2data,target=make_hastie_10_2()

X_train,X_test,y_train,y_test=train_test_split(data,target,random_state=123)X_train.shape,X_test.shape

((9000, 10), (3000, 10))

模型对比

对比六大模型,都使用默认参数

fromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.ensembleimportAdaBoostClassifierfromsklearn.ensembleimportGradientBoostingClassifierfromxgboostimportXGBClassifierfromlightgbmimportLGBMClassifierfromsklearn.model_selectionimportcross_val_scoreimporttimeclf1=LogisticRegression()clf2=RandomForestClassifier()clf3=AdaBoostClassifier()clf4=GradientBoostingClassifier()clf5=XGBClassifier()clf6=LGBMClassifier()forclf,labelinzip([clf1,clf2,clf3,clf4,clf5,clf6],["LogisticRegression","RandomForest","AdaBoost","GBDT","XGBoost","LightGBM"]):start=time.time()scores=cross_val_score(clf,X_train,y_train,scoring="accuracy",cv=5)end=time.time()running_time=end-startprint("Accuracy:%0.8f (+/-%0.2f),耗时%0.2f秒。模型名称[%s]"%(scores.mean(),scores.std(),running_time,label))

Accuracy: 0.47488889 (+/- 0.00),耗时0.04秒。模型名称[Logistic Regression]Accuracy: 0.88966667 (+/- 0.01),耗时16.34秒。模型名称[Random Forest]Accuracy: 0.88311111 (+/- 0.00),耗时3.39秒。模型名称[AdaBoost]Accuracy: 0.91388889 (+/- 0.01),耗时13.14秒。模型名称[GBDT]Accuracy: 0.92977778 (+/- 0.00),耗时3.60秒。模型名称[XGBoost]Accuracy: 0.93188889 (+/- 0.01),耗时0.58秒。模型名称[LightGBM]

对比了六大模型,可以看出,逻辑回归速度最快,但准确率最低。而LightGBM,速度快,而且准确率最高,所以,现在处理结构化数据的时候,大部分都是用LightGBM算法。

XGBoost的使用 1.原生XGBoost的使用

importxgboostasxgb#记录程序运行时间importtimestart_time=time.time()#xgb矩阵赋值xgb_train=xgb.DMatrix(X_train,y_train)xgb_test=xgb.DMatrix(X_test,label=y_test)##参数params={"booster":"gbtree",#"silent":1,#设置成1则没有运行信息输出,最好是设置为0.#"nthread":7,#cpu线程数默认最大"eta":0.007,#如同学习率"min_child_weight":3,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。"max_depth":6,#构建树的深度,越大越容易过拟合"gamma":0.1,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。"subsample":0.7,#随机采样训练样本"colsample_bytree":0.7,#生成树时进行的列采样"lambda":2,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#"alpha":0,#L1正则项参数#"scale_pos_weight":1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。#"objective":"multi:softmax",#多分类的问题#"num_class":10,#类别数,多分类与multisoftmax并用"seed":1000,#随机种子#"eval_metric":"auc"}plst=list(params.items())num_rounds=500#迭代次数watchlist=[(xgb_train,"train"),(xgb_test,"val")]

#训练模型并保存#early_stopping_rounds当设置的迭代次数较大时,early_stopping_rounds可在一定的迭代次数内准确率没有提升就停止训练model=xgb.train(plst,xgb_train,num_rounds,watchlist,early_stopping_rounds=100,)#model.save_model("./model/xgb.model")#用于存储训练出的模型print("bestbest_ntree_limit",model.best_ntree_limit)y_pred=model.predict(xgb_test,ntree_limit=model.best_ntree_limit)print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))#输出运行时长cost_time=time.time()-start_timeprint("xgboostsuccess!","\n","costtime:",cost_time,"(s)......")

[0]train-rmse:1.11000val-rmse:1.10422[1]train-rmse:1.10734val-rmse:1.10182[2]train-rmse:1.10465val-rmse:1.09932[3]train-rmse:1.10207val-rmse:1.09694

……

[497]train-rmse:0.62135val-rmse:0.68680[498]train-rmse:0.62096val-rmse:0.68650[499]train-rmse:0.62056val-rmse:0.68624best best_ntree_limit 500error=0.826667xgboost success!  cost time: 3.5742645263671875 (s)......

2.使用scikit-learn接口

会改变的函数名是:

eta -> learning_rate

lambda -> reg_lambda

alpha -> reg_alpha

fromsklearn.model_selectionimporttrain_test_splitfromsklearnimportmetricsfromxgboostimportXGBClassifierclf=XGBClassifier(# silent=0, #设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。#nthread=4,#cpu线程数默认最大learning_rate=0.3,#如同学习率min_child_weight=1,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。max_depth=6,#构建树的深度,越大越容易过拟合gamma=0,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。subsample=1,#随机采样训练样本训练实例的子采样比max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。colsample_bytree=1,#生成树时进行的列采样reg_lambda=1,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#reg_alpha=0,#L1正则项参数#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重#objective="multi:softmax",#多分类的问题指定学习任务和相应的学习目标#num_class=10,#类别数,多分类与multisoftmax并用n_estimators=100,#树的个数seed=1000#随机种子#eval_metric="auc")clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))

Accuracy : 0.936

LIghtGBM的使用 1.原生接口

importlightgbmaslgbfromsklearn.metricsimportmean_squared_error#加载你的数据#print("Loaddata...")#df_train=pd.read_csv("../regression/regression.train",header=None,sep="\t")#df_test=pd.read_csv("../regression/regression.test",header=None,sep="\t")##y_train=df_train[0].values#y_test=df_test[0].values#X_train=df_train.drop(0,axis=1).values#X_test=df_test.drop(0,axis=1).values#创建成lgb特征的数据集格式lgb_train=lgb.Dataset(X_train,y_train)#将数据保存到LightGBM二进制文件将使加载更快lgb_eval=lgb.Dataset(X_test,y_test,reference=lgb_train)#创建验证数据#将参数写成字典下形式params={"task":"train","boosting_type":"gbdt",#设置提升类型"objective":"regression",#目标函数"metric":{"l2","auc"},#评估函数"num_leaves":31,#叶子节点数"learning_rate":0.05,#学习速率"feature_fraction":0.9,#建树的特征选择比例"bagging_fraction":0.8,#建树的样本采样比例"bagging_freq":5,#k意味着每k次迭代执行bagging"verbose":1#<0显示致命的,=0显示错误(警告),>0显示信息}print("Starttraining...")#训练cvandtraingbm=lgb.train(params,lgb_train,num_boost_round=500,valid_sets=lgb_eval,early_stopping_rounds=5)#训练数据需要参数列表和数据集print("Savemodel...")gbm.save_model("model.txt")#训练后保存模型到文件print("Startpredicting...")#预测数据集y_pred=gbm.predict(X_test,num_iteration=gbm.best_iteration)#如果在训练期间启用了早期停止,可以通过best_iteration方式从最佳迭代中获得预测#评估模型print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))

Start training...[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000448 seconds.You can set `force_col_wise=true` to remove the overhead.[LightGBM] [Info] Total Bins 2550[LightGBM] [Info] Number of data points in the train set: 9000, number of used features: 10[LightGBM] [Info] Start training from score 0.012000[1]valid_0"s auc: 0.814399valid_0"s l2: 0.965563Training until validation scores don"t improve for 5 rounds[2]valid_0"s auc: 0.84729valid_0"s l2: 0.934647[3]valid_0"s auc: 0.872805valid_0"s l2: 0.905265[4]valid_0"s auc: 0.884117valid_0"s l2: 0.877875[5]valid_0"s auc: 0.895115valid_0"s l2: 0.852189

……

[191]valid_0"s auc: 0.982783valid_0"s l2: 0.319851[192]valid_0"s auc: 0.982751valid_0"s l2: 0.319971[193]valid_0"s auc: 0.982685valid_0"s l2: 0.320043Early stopping, best iteration is:[188]valid_0"s auc: 0.982794valid_0"s l2: 0.319746Save model...Start predicting...error=0.664000

2.scikit-learn接口

fromsklearnimportmetricsfromlightgbmimportLGBMClassifierclf=LGBMClassifier(boosting_type="gbdt",#提升树的类型gbdt,dart,goss,rfnum_leaves=31,#树的最大叶子数,对比xgboost一般为2^(max_depth)max_depth=-1,#最大树的深度learning_rate=0.1,#学习率n_estimators=100,#拟合的树的棵树,相当于训练轮数subsample_for_bin=200000,objective=None,class_weight=None,min_split_gain=0.0,#最小分割增益min_child_weight=0.001,#分支结点的最小权重min_child_samples=20,subsample=1.0,#训练样本采样率行subsample_freq=0,#子样本频率colsample_bytree=1.0,#训练特征采样率列reg_alpha=0.0,#L1正则化系数reg_lambda=0.0,#L2正则化系数random_state=None,n_jobs=-1,silent=True,)clf.fit(X_train,y_train,eval_metric="auc")#设置验证集合verbose=False不打印过程clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))

Accuracy : 0.927

参考

1.https://xgboost.readthedocs.io/

2.https://lightgbm.readthedocs.io/

3.https://blog.csdn.net/q383700092/article/details/53763328?locationNum=9&fps=1

往期精彩回顾适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码

上一篇: 下一篇:
x
推荐阅读

全球最资讯丨【机器学习】集成学习代码练习(随机森林、GBDT、XGBoost、LightGBM等)

2022-12-23

同仁堂: 同仁堂第九届董事会第十六次会议决议公告 快报

2022-12-22

环球头条:马来西亚山体滑坡事故遇难人数升至30人

2022-12-22

微动态丨2022 ZOL推荐 | 惠普Z系列大师本 ZBook Studio G9提供强劲生产力 获奖

2022-12-22

世界热推荐:梅花生物: 梅花生物2023年员工持股计划(草案)摘要

2022-12-21

天天精选!他们连夜分装紧俏药品缓解配药难,一盒布洛芬为4名患者退了烧

2022-12-21

实施好积极的财政政策和稳健的货币政策|今日热闻

2022-12-21

【世界速看料】胜通能源: 国元证券股份有限公司关于胜通能源股份有限公司2022年持续督导培训情况的报告

2022-12-20

每日速讯:北京地铁今起缩短发车间隔!10号线早高峰2到3分钟一趟

2022-12-20

浙江湖州:优化核酸检测与查验政策,做好医疗救治资源储备

2022-12-19

【环球时快讯】迎丰股份:拟收购绍兴布泰100%股权

2022-12-19

国产操作系统推出移动固态硬盘,双系统一插即用 天天快播

2022-12-19

许昌市建安区税务局打造“3公里”办税缴费服务圈

2022-12-19

唏嘘!阿杜:真怀念与老詹巅峰对决 已经四年没碰面|当前热讯

2022-12-18

特斯拉(TSLA.US)股价腰斩 分析师和股东将枪口对准马斯克

2022-12-17

中央经济工作会议:适时实施渐进式延迟法定退休年龄政策_实时焦点

2022-12-16

本周盘点(12.12-12.16):金枫酒业周涨3.70%,主力资金合计净流出911.77万元 焦点快报

2022-12-16

两市ETF两融余额减少1.9亿元 当前讯息

2022-12-16

马斯克抛售价值35亿美元的特斯拉股票 投资者其参与Twitter事务表示担忧

2022-12-15

桂东电力董秘回复:闽商石业借资是根据其发展需要作出的安排,闽商石业全体股东均按出资比例同等条件借资 当前短讯

2022-12-15

涨停雷达:新零售个股异动 青岛金王触及涨停

2022-12-15

每日观点:宝钢超级13Cr产品独家供货海南福山油田CCUS重点项目

2022-12-14

世界关注:副省长张广智莅济调研全域旅游工作

2022-12-14

每日快报!马应龙:12月13日融券卖出金额87.47万元,占当日流出金额的1.18%

2022-12-14

凉拌腐竹的做法(正确泡腐竹的方法)

2022-12-13

鞍钢股份:12月12日融券卖出金额27.49万元,占当日流出金额的0.4%

2022-12-13

报告:预计今年中国将接待入境游客超2000万人次 当前焦点

2022-12-12

将毕业设计“写”在乡村田间地头_环球快消息

2022-12-12

【环球时快讯】北京今起云量增多 明后天风力加大最高温或降至冰点以下

2022-12-11

歌尔股份:涉及具体客户或项目名称的问题,不便于评论

2022-12-09

白云山(600332)12月7日主力资金净买入1.46亿元 天天快资讯

2022-12-08

股票行情快报:阳光照明(600261)12月6日主力资金净卖出18.85万元 全球快资讯

2022-12-06

科创板解禁潮在即 高成长增添“惜售”底气

2022-07-20

总投资3172.5亿元 石家庄提前超额完成年度目标任务

2022-03-20

石家庄海关共签发RCEP原产地证书864份 货值3.9亿元

2022-03-20

蚌埠海关累计签发RCEP原产地证书35份 涉及金额2583.09万元

2022-03-20

绥化望奎以工业化思维为引领 推动肉类加工制造产业腾飞

2022-03-20

衡阳耒阳免费发放油茶苗 助推油茶产业稳步发展

2022-03-20

郴州安仁文旅项目集中开工 总投资1000万元

2022-03-20

2022年郴州计划重点推进文旅项目101个 总投资354亿元

2022-03-20

宿州泗县深入推进文旅融合发展 擦亮城市品牌

2022-03-20

汽车零部件产业“领头羊” 锦州力争一季度“开门红”

2022-03-20

油价或有望冲击“九元”大关 宁波新能源汽车市场如何

2022-03-20

从水塘到“云”端 全国最大高邮鸭养殖基地实现智慧养殖

2022-03-20

淡季不忘引流 京郊民宿市场有望迎来回暖

2022-03-20

镇江乡村一二三产业融合发展 闯出“镇江之路”

2022-03-20

总投资30亿元 盐城东台8个重大产业项目相继开工

2022-03-20

去年南京规上信息软件业企业实现营收7577.28亿元 同比增长10.3%

2022-03-20

2021年南京农业保险保费收入53.07亿元 同比增长19.13%

2022-03-20

安阳本土确诊病例上升至26例

2022-01-10

3次推迟婚期 满洲里抗疫民警兑现承诺:“我回来娶你了!”

2022-01-10

上海公安民警在岗位上迎接2022年“中国人民警察节”

2022-01-10

郑州核酸检测为中小学生开辟“绿色通道”

2022-01-10

反扒便衣警察“小曹”:藏在人海中的隐形“守护者”

2022-01-10

哥哥移植肾脏给病重弟弟 已在上海顺利康复

2022-01-10

网友与人裸聊被敲诈10万余元 被告人获刑5年

2022-01-10

1月10日起天津市暂停开展旅行社旅游业务活动

2022-01-10

“3·28”特大跨境电信网络诈骗案公开审理

2022-01-10

忠诚履职 守护万家灯火

2022-01-10

奥密克戎病例已涉天津、安阳 “动态清零”必须坚持!

2022-01-10

专家协作成功完成亲体肾移植 同“肾”兄弟顺利康复

2022-01-10

著名指挥陈燮阳携苏州交响乐团“相约北京”

2022-01-10

中国热科院选育出4个木薯新品种

2022-01-10

北京疾控:12月9日以来途经或旅居天津市人员请立即报备

2022-01-10

河南安阳本轮疫情累计报告确诊病例26例

2022-01-10

许勤批示黑土地保护不力问题:加快形成黑土地保护长效机制

2022-01-10

【挑战365天正能量速写画】第041期:当警娃难,当双警家庭的警娃更难

2022-01-10

重庆姐弟坠亡案两被告人5个月间聊天记录曝光

2022-01-10

因疫情防控措施落实不力 江苏金湖一超市被红牌警告

2022-01-10

江歌案一审判决刘鑫赔偿近70万元 有何依据?专家解读

2022-01-10

广东肇庆“毒驾连撞5车致1死”肇事司机被批捕

2022-01-10

一线工作近22年的缉毒警:我知道坏的是毒品不是人性

2022-01-10

青海保障门源地震后生活必需品应急物资

2022-01-10

江西最大文物倒卖案宣判:倒卖国家二级文物 9人获刑

2022-01-10

呼和浩特:寒假期间有条件的学校要开展校内托管服务

2022-01-10

广西东兴口岸恢复通关 入境需网上预约

2022-01-10

天津米面油存量由20天提高至30天 超市菜市场进货量翻倍

2022-01-10

天津市委市政府致全市父老乡亲的慰问信:我们一定能够打赢

2022-01-10

北京市十五届人大五次会议胜利闭幕

2022-01-10

“中国最后一个原始部落”翁丁老寨火灾原因公布

2022-01-10

天津:划定封控区 全市开展全员核酸检测

2022-01-10

重庆姐弟被生父扔下坠亡案上诉期结束 一审法院暂未收到两被告人上诉状

2022-01-10

子夜直击,天津寒天战“疫”

2022-01-10

兰州名师话“美育”:“尚乐立人”分层培优 以“美”润教

2022-01-10

中国边疆“北方第一所”:9名民警守护“生命禁区”

2022-01-10

江歌母亲江秋莲:尊重法院判决,法律认定在我意料之中

2022-01-10

河南安阳9日12时至24时新增11例本土确诊病例

2022-01-10

辟谣!网传“封控区管控区相继解封”通知并非西安

2022-01-10

铁路公安以110幅优秀书画作品庆祝人民警察节

2022-01-10

“中国最后一个原始部落”翁丁老寨火灾原因公布

2022-01-10

天津:划定封控区 全市开展全员核酸检测

2022-01-10

重庆姐弟被生父扔下坠亡案上诉期结束 一审法院暂未收到两被告人上诉状

2022-01-10

子夜直击,天津寒天战“疫”

2022-01-10

兰州名师话“美育”:“尚乐立人”分层培优 以“美”润教

2022-01-10

中国边疆“北方第一所”:9名民警守护“生命禁区”

2022-01-10

江歌母亲江秋莲:尊重法院判决,法律认定在我意料之中

2022-01-10

河南安阳9日12时至24时新增11例本土确诊病例

2022-01-10

辟谣!网传“封控区管控区相继解封”通知并非西安

2022-01-10

铁路公安以110幅优秀书画作品庆祝人民警察节

2022-01-10

老人5折环卫工8折生活困难免费 这家面馆背后有个暖心事

2022-01-10